Apache Drill is an open source distributed system for interactive analysis of large-scale datasets.
Drill is similar to Google’s Dremel, with the additional flexibility needed to support a broader range of query languages, data formats and data sources. It is designed to efficiently process nested data. It is a design goal to scale to 10,000 servers or more and to be able to process petabytes of data and trillions of records in seconds.
Many organizations have the need to run data-intensive applications, including batch processing, stream processing and interactive analysis.
Features include:
- Consists of four key components/layers:
- Query languages: This layer is responsible for parsing the user’s query and constructing an execution plan. The initial goal is to support the SQL-like language used by Dremel and which we call DrQL. However, Drill is designed to support other languages and programming models, such as the Mongo Query Language, Cascading and Plume.
- Low-latency distributed execution engine: This layer is responsible for executing the physical plan. It provides the scalability and fault tolerance needed to efficiently query petabytes of data on 10,000 servers. Drill’s execution engine is based on research in distributed execution engines (eg, Dremel, Dryad, Hyracks, CIEL, Stratosphere) and columnar storage, and can be extended with additional operators and connectors.
- Nested data formats: This layer is responsible for supporting various data formats. The initial goal is to support the column-based format used by Dremel. Drill is designed to support schema-based formats such as Protocol Buffers/Dremel, Avro/AVRO-806/Trevni and CSV, and schema-less formats such as JSON, BSON or YAML. In addition, it is designed to support column-based formats such as Dremel, AVRO-806/Trevni and RCFile, and row-based formats such as Protocol Buffers, Avro, JSON, BSON and CSV. A particular distinction with Drill is that the execution engine is flexible enough to support column-based processing as well as row-based processing. This is important because column-based processing can be much more efficient when the data is stored in a column-based format, but many large data assets are stored in a row-based format that would require conversion before use.
- Scalable data sources: This layer is responsible for supporting various data sources.
Website: drill.apache.org
Support:
Developer: Apache Foundation
License: Apache License 2.0
Apache Drill is written in Java. Learn Java with our recommended free books and free tutorials.
Return to Data Analysis Tools for Big Data
Popular series | |
---|---|
The largest compilation of the best free and open source software in the universe. Each article is supplied with a legendary ratings chart helping you to make informed decisions. | |
Hundreds of in-depth reviews offering our unbiased and expert opinion on software. We offer helpful and impartial information. | |
The Big List of Active Linux Distros is a large compilation of actively developed Linux distributions. | |
Replace proprietary software with open source alternatives: Google, Microsoft, Apple, Adobe, IBM, Autodesk, Oracle, Atlassian, Corel, Cisco, Intuit, and SAS. | |
Awesome Free Linux Games Tools showcases a series of tools that making gaming on Linux a more pleasurable experience. This is a new series. | |
Machine Learning explores practical applications of machine learning and deep learning from a Linux perspective. We've written reviews of more than 40 self-hosted apps. All are free and open source. | |
New to Linux? Read our Linux for Starters series. We start right at the basics and teach you everything you need to know to get started with Linux. | |
Alternatives to popular CLI tools showcases essential tools that are modern replacements for core Linux utilities. | |
Essential Linux system tools focuses on small, indispensable utilities, useful for system administrators as well as regular users. | |
Linux utilities to maximise your productivity. Small, indispensable tools, useful for anyone running a Linux machine. | |
Surveys popular streaming services from a Linux perspective: Amazon Music Unlimited, Myuzi, Spotify, Deezer, Tidal. | |
Saving Money with Linux looks at how you can reduce your energy bills running Linux. | |
Home computers became commonplace in the 1980s. Emulate home computers including the Commodore 64, Amiga, Atari ST, ZX81, Amstrad CPC, and ZX Spectrum. | |
Now and Then examines how promising open source software fared over the years. It can be a bumpy ride. | |
Linux at Home looks at a range of home activities where Linux can play its part, making the most of our time at home, keeping active and engaged. | |
Linux Candy reveals the lighter side of Linux. Have some fun and escape from the daily drudgery. | |
Getting Started with Docker helps you master Docker, a set of platform as a service products that delivers software in packages called containers. | |
Best Free Android Apps. We showcase free Android apps that are definitely worth downloading. There's a strict eligibility criteria for inclusion in this series. | |
These best free books accelerate your learning of every programming language. Learn a new language today! | |
These free tutorials offer the perfect tonic to our free programming books series. | |
Linux Around The World showcases usergroups that are relevant to Linux enthusiasts. Great ways to meet up with fellow enthusiasts. | |
Stars and Stripes is an occasional series looking at the impact of Linux in the USA. |